If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=3Y^2+5Y-4
We move all terms to the left:
-(3Y^2+5Y-4)=0
We get rid of parentheses
-3Y^2-5Y+4=0
a = -3; b = -5; c = +4;
Δ = b2-4ac
Δ = -52-4·(-3)·4
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{73}}{2*-3}=\frac{5-\sqrt{73}}{-6} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{73}}{2*-3}=\frac{5+\sqrt{73}}{-6} $
| 1/2a+2/3(50)=50 | | x/19.5=12/18 | | x/19,5=12/18 | | 10x-3=(x+2)=1 | | x20=200 | | M=7x6+19 | | 2^xx2^x+1=8 | | 2^x.2^x+1=8 | | x=22(2x+6) | | x=22(2x=6) | | 2^x•2^x+1=8 | | 8(x+2)+3x=38 | | 121c1212=121 | | 5x-6(1)=2.7 | | -5+11y-3= | | 40–4x=50-8x | | 5x-6(2)=2.7 | | 1/4g-15=45 | | 2^x+1=4^2x-4 | | 3^2x+5=3^7 | | -2x+4=-12+2x | | 64+52+x=180 | | 5t2–20t+20=0 | | x^2+18=32 | | 58+56+x=180 | | -2p^2+24p+-54=0 | | -2p2+24p+-54=0 | | -2x^2+24x=54 | | -2p^2+24p=54 | | -3x^2-12x-96=0 | | 20x+24+6x+8=2 | | 2.25k-20=6.k+14 |